电子能量损失谱(EELS)

借助电子能量损失谱 (EELS) 进行化学和成分分析。

概述 产品 媒体库 研究热点 出版物 资源 回到顶部
概述: 

TEM 样品与电子束相互作用。电子能量损失谱 (EELS) 是测量电子在与样品相互作用后的动能变化的一系列技术。该技术用于确定样品的原子结构和化学特性,包括:原子的种类及数量、原子的化学状态以及原子与近邻原子的集体相互作用。部分技术包括:光谱、能量过滤透射电子显微术 (EFTEM) 和 DualEELS。

TEM 中电子能量损失的原子级视图当电子穿过样品时,它们会与固体中的原子相互作用。许多电子在穿过薄样品时不会损失能量。一部分在与原子相互作用时会发生非弹性散射并损失能量。这会让样品处于激发态。材料可通过放弃通常以可见光子、X 射线或俄歇电子形式存在的能量实现去激发。

入射电子与样品相互作用时,能量和动量都会发生改变。您可以在分光计中检测到此类散射入射电子,因为它会发出电子能量损失信号。样品电子(或集体激发)会带走额外的能量和动量。

当紧密结合的芯电子被入射电子激发为高能量状态时会发生铁芯损耗激发。芯电子只能被激发至材料中处于空态的能量。这些空态可以是材料中高于费米能级的束缚态(分子轨道图中所谓的反键轨道)。状态也可以是高于真空能级的自由电子态。费米能量散射的突然开启和空态探测导致 EELS 信号对原子类型和电子状态敏感。EELS 和样品特性之间的相关性

将费米能级对齐光谱零损失峰 (ZLP),即可显现铁芯损耗激发中的初始光谱特征。边缘现在可被视为电子能量损失足以使芯能级原子电子达到费米能级的点。这种模拟未能重现高于费米能级的散射,但有助于可视化芯能级边缘的强度突增。EELS 光谱简介

典型的能量损失光谱包括多个区域。第一个峰值,也就是对于极薄样品强度最高的位置,发生在 0 eV 损失处(等于初始束流能量),因此被称为零损失峰值。它代表了未发生非弹性散射的电子,但有可能发生了弹性散射或能量损失极小而无法测量。零损失峰值的宽度主要反映电子源的能量分布。宽度通常为 0.2 – 2.0 eV,但在单色电子源中可能窄至 10 meV 或以下。

Research Spotlight

TEM team & collaborators from left to right: Dayne Swearer, Rowan Leary, Emilie Ringe, and Sadegh Yazdi.

The Ringe Group was established in 2014 in the department of Materials Science and NanoEngineering (MSNE) at Rice University, Houston...

资源:

 

应用

EELS.info

使用 DualEELS™ 模式中高能量边缘的原子级 EELS 映射
以 DualEELS 模式对 III-V MOSFET 设备制造的金属合金欧姆接触进行高速 EELS 成分分析
EELS:用于研究生物材料的工具
使用 GIF Quantum® 系统,快速同时从包含重金属 Au 和 Pd 的催化剂粒子中获取 EELS 光谱中的低损耗和铁芯损耗区域
使用 Gatan Microscopy Suite® 软件中的同步 EELS 和 EDS 的快速 STEM 光谱成像
回顾光谱成像领域的最新进展及其向倒易空间领域的延伸
用于解析原子级 EELS 光谱中的重叠边缘的 MLLS 拟合方法的使用

海报

对基于 Pd-Au 的催化剂的快速 STEM EELS 光谱成像分析
新一代 EELS 分光计效率极高,能够以毫秒速度从重元素中获取细节详实的 EELS 光谱,生成具有出色信息内容的成分图。

使用 EELS 进行生物材料的定量研究
经实践证明,EELS 是从生物样品中获取成分信息的宝贵工具。除成分以外,EELS 还提供了对化学特性的深入见解,揭示了化学键性质和不同的氧化态。

以 DualEELS 模式进行高阻抗金属合金的高速成分分析
证明了通常可从高能量边缘获取具备高对比度和高信噪比的高速原子 EELS 成分图。

使用 DualEELS 模式中高能量边缘的快速原子级 EELS 映射分析
证明了使用高能量边缘进行的原子 EELS 映射非常有效。高能量边缘的高信背比简化了数据提取。

对 III-V MOSFET 高介电系数叠层栅介质中的接触面进行原子解析 EELS 分析
证明了 EELS SI 可揭示原子列级的高介电系数 MOSFET 设备栅元素分布。

回到顶部