The team at Electron Microscopy Group in Nano-Materials Research Institute of AIST aims to realize the characterization of...
Electron energy loss spectroscopy (EELS) is a family of techniques that measure the change in kinetic energy of electrons after they interact with a specimen. This technique is used to determine the atomic structure and chemical properties of a specimen, including: the type and quantity of atoms present, chemical state of atoms and the collective interactions of atoms with their neighbors. Some of these techniques include: spectroscopy, energy-filtered transmission electron microscopy (EFTEM), and DualEELS™.
As electrons pass through a specimen, they interact with atoms of the solid. Many of the electrons pass through the thin sample without losing energy. A fraction will undergo inelastic scattering and lose energy as they interact with the specimen. This leaves the sample in an excited state. The material can de-excite by giving up energy typically in the form of visible photons, x-rays or Auger electrons.
As the incident electron interacts with the sample, it changes both its energy and momentum. You can detect this scattered incident electron in the spectrometer as it gives rise to the electron energy loss signal. The sample electron (or collective excitation) carries away this additional energy and momentum.
Core-loss excitations occur when tightly bound core electrons are promoted to a higher energy state by the incident electron. The core electron can only be promoted to an energy that is an empty state in the material. These empty sates can be bound states in the material above the Fermi level (so called anti-bonding orbitals in the molecular orbital picture). The states can also be free electron states above the vacuum level. It is the sudden turn-on of the scattering at the Fermi energy and the probing of empty states which makes the EELS signal sensitive to both the atom type and its electronic state.
You can visualize the initial spectral features in the core-loss excitations when you align the Fermi level with the zero-loss peak (ZLP) of the spectrum. The edges can now be seen as the point where the electrons lose enough energy to promote the core level atomic electrons to the Fermi level. This analogy fails to reproduce the scattering above the Fermi level, but is helpful to visualize the core level edge sudden increase in intensity.
A typical energy loss spectrum includes several regions. The first peak, the most intense for a very thin specimen, occurs at 0 eV loss (equal to the primary beam energy) and is therefore called the zero-loss peak. It represents electrons that did not undergo inelastic scattering, but may have been scattered elastically or with an energy loss too small to measure. The width of the zero-loss peak mainly reflects the energy distribution of the electron source. It is typically 0.2 – 2.0 eV but may be as narrow as 10 meV or lower in a monochromated electron source.
For more information on the EELS family of techniques, please visit EELS.info, an educational site.
High-speed, counting mode, direct detection camera, supporting both energy-filtered imaging and spectroscopy.
High-angle annular dark field (HAADF), annular dark field (ADF) plus bright and dark field (BF/DF) detectors for STEM imaging optimized for electron energy loss spectroscopy (EELS).
Drive your digital cameras and surrounding components to support key applications including tomography, in-situ, spectrum and diffraction imaging, plus more.
Simulation tool to eliminate the guesswork from your EELS and EFTEM compositional mapping experiments.
A powerful method of obtaining detailed analytic data from a sample on an electron microscope equipped with scanning mode.
Digital beam control and image processing to enhance the photographic quality of your digital images.
Winner of the 2015 Microscopy Today Innovation Award. The ONE camera to capture 16 MP images and video in all your TEM applications.
Quantify microstructural changes in materials due to applied mechanical loading.
-
Observing sample dynamics using in-situ EELS and heating webinar
-
Practical approaches for in-situ and environmental transmission electron microscopy
-
Chemical and compositional analysis of 3D NAND and FinFET devices
-
Gatan Microscopy Suite Software
-
Colorized EELS elemental map
-
SingleMap
-
MultiMap
-
Jointly acquired HAADF and MAADF signals
-
Phosphorus-containing macromolecular assemblies in the cell nuclei of drosophila larvae
-
Atomic level EELS prepared in PIPS II system following FIB preparation (image 2)
-
Atomic level EELS prepared in PIPS II system following FIB preparation
-
EELS analysis of metal segregation across grain boundary in Yttria-stabilized Zirconia (YSZ) – investigating oxygen vacancies
-
Fast EELS analysis of AlNiCo based metal alloy for magnetic purposes
-
Fast EELS analysis of metals in a blood cell attacked by the malaria parasite
-
Fast DualEELS analysis of the distribution of Pd particles and their chemistry in zeolite
-
Atomic DualEELS analysis of CaFeO2,5 Brownmillerite structure—Investigating the presence of oxygen vacancies
-
First atomic EELS map acquired during volcano eruption
-
Fast atomic EELS analysis across the GaN/AlGaN interface
-
Fast Joint EELS / EDS color map of a SrTiO3 crystal
-
Fast joint EELS / EDS color map across a 32 nm transistor device
-
Fast joint EELS / EDS color map across the SrTiO3/LaFeO3 interfaces
-
Fast joint EELS/EDS color map across SrTiO3/LaFeO3/LaCuOx interfaces
-
Fast DualEELS color map across the InP/HfO2 interface
-
Fast atomic DualEELS color map across the SrTiO3/SrMnO4 interface
-
Fast DualEELS color map of a AuGeNi metal alloy ohmic contact for the fabrication of III-V transistor device structures; absolute compositional analysis also carried out
-
Fast DualEELS color map of a III-V transistor device structure before gate metallization process
-
Atomic Resolved EELS color map of GaAs/Ga2O3
-
Atomic level EELS color map of a Pt/Ru catalyst nanoparticle
-
Fast atomic DualEELS analysis at 60 kV of graphene layers after graphitization process of SiC
-
EELS color map showing the distribution LiFePO4 (red) and FePO4 (green) particles from a battery electrode charged to half cycle
-
EELS color map of a Pt/Fe catalyst nanoparticle
-
EELS color map of a Pt/Au catalyst nanoparticle
-
Plasmon peak position map going from diamond (yellow) to amorphous carbon (blue)
-
EELS color map of a magnetic device
-
EELS color map of a Pd/Au catalyst particle
The Ringe Group was established in 2014 in the department of Materials Science and NanoEngineering (MSNE) at Rice University, Houston...
Hart, J. L.; Lang, A. C.; Leff, A. C.; Longo, P.; Trevor, C.; Twesten, R. D.; Taheri, M. L.
Visible surface plasmon modes in single Bi2Te3 nanoplate
Zhao, M.; Bosman, M.; Danesh, M.; Zeng, M.; Song, P.; Darma, Y.; Rusydi, A.; Lin, H.; Qiu, C. -W.; Loh, K. P.
Exploring the single atom spin state by electron spectroscopy
Lin,Y. -C.; Teng, P. -Y.; Chiu, P, -W.; Suenaga, K.
Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
Shukla, A. K.; Ramasse, Q. M.; Ophus, C.; Duncan, H.; Hage, F.; Chen, G.
Nanoscale temperature mapping in operating microelectronic devices
Mecklenburg, M.; Hubbard, W. H.; White, E. R.; Dhall, R.; Cronin, S. B.; Aloni, S.; Regan, B. C.
Rajput, N. S.; Shao-Horn, Y.; Li, X. -H.; Kim, S. -G.; Jouiad, M.
Sinclair, R.; Lee, S. C.; Shi, Y.; Chueh, W. C.
Novel near-infrared emission from crystal defects in MoS2 multilayer flakes
Fabbri, F.; Rotunno, E.; Cinquanta, E.; Campi, D.; Bonnini, E.; Kaplan, D.; Lazzarini, L.; Bernasconi, M.; Ferrari, C.; Longo, M.; Nicotra, G.; Molle, A.; Swaminathan, V.; Salviati, G.
Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy
Mørtsell, E. A.; Wenner, S.; Longo, P.; Andersen, S. J.; Marioara, C. D.; Holmestad, R.
Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants
Restivo, J.; Garcia-Bordejé, E.; Órfão, J. J. M.; Pereira, M. F. R.
Distinct carbon growth mechanisms on the components of Ni/YSZ materials
Kogler, M.; Köck, E. -M.; Stöger-Pollach, M.; Schwarz, S.; Schachinger, T.; Klötzer, B.; Penner, S.
Wang, Y.; Baiutti, F.; Gregori, G.; Cristiani, G.; Salzberger, U.; Logvenov, G.; Maier, J.; van Aken, P. A.
Bae, I. -T.; Naganuma, H.; Ichinose, T.; Sato, K.
Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs.
Ilari, G. M.; Chawla, V.; Matam, S.; Zhang, Y.; Michler, J.; Erni, R.
Cats, K. H.; Andrews, J. C.; Stéphan, O.; March, K.; Karunakaran, C.; Meirer, F.; de Groot, F. M. F.; Weckhuysen, B. M.
Permatasari, F. A.; Aimon, A. H.; Iskandar, F.; Ogi, T.; Okuyama, K.
Carrasco, J. A.; Romero, J.; Varela, M.; Hauke, F.; Abellán, G.; Hirsch, A.; Coronado, E.
Nafria, R.; Genç, A.; Ibáñez, M.; Arbiol, J.; de la Piscina, P. R.; Homs, N.; Cabot, A.
Atomic and electronic structure of twin growth defects in magnetite
Gilks, D.; Nedelkoski, Z.; Lari, L.; Kuerbanjiang, B.; Matsuzaki, K.; Susaki, T.; Kepaptsoglou, D.; Ramasse, Q.; Evans, R.; McKenna, K.; Lazarov, V. K.
Rectifying electrical contacts to n- type 6H-SiC formed from energetically deposited carbon
Kracica, M.; Mayes, E. L. H.; Tran, H. N.; Holland, A. S.; McCulloch, D. G.; Partridge, J. G.
Heterogeneous diamond phases in compressed graphite studied by electron energy-loss spectroscopy
Sato, Y.; Bugnet, M.; Terauchi, M.; Botton, G. A.; Yoshiasa, A.
Fundamentals of electron energy-loss spectroscopy
Hofer, F.; Schmidt, F. P.; Grogger W.; Kothleitner, G.
Gaslain, F. O. M.; Le, H. T.; Duhamel, C.; Guerre, C.; Laghoutaris, P.
Bejjani, R.; Collin, M.; Thersleff, T.; Odelros, S.
Maity, D.; Pattanayak, S.; Mollick, M. R.; Rana, D.; Mondal, D.; Bhowmick, B.; Dash, S. K.; Chattopadhyay, S.; Das, B.; Roy, S.; Chakraborty, M.; Chattopadhyay, D.
Scalable heating-up synthesis of monodisperse Cu2ZnSnS4 nanocrystals
Shavel, A.; Ibáñez, M.; Luo, Z.; De Roo, J.; Carreté, A.; Dimitrievska, M.; Genç, A.; Meyns, M.; Pérez-Rodríguez, A.; Kovalenko, M. V.; Arbiol, J.; Cabot, A.
Combined Cr and Mo poisoning of (La,Sr)(Co,Fe)O3 − δ solid oxide fuel cell cathodes at the nanoscale
Ni, N.; Skinner, S.
Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns
Kong, X.; Li, H.; Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.; Draxl, C.; Trampert, A.
Lacroix, B.; Godinho, V.; Fernández, A.
Excimer laser assisted re-oxidation of BaTiO3 thin films on Ni metal foils
Bharadwaja, S. S. N.; Rajashekhar, A.; S. W.; Qu, W.; Motyka, M.; Podraza, N.; Clark, T.; Randall, C. A.; Trolier-McKinstry, S.
Resonances of nanoparticles with poor plasmonic metal tips
Ringe, E.; DeSantis, C. J.; Collins, S. M.; Duchamp, M.; Dunin-Borkowski, R. E.; Skrabalak, S. E.; Midgley, P. A.
Resonances of nanoparticles with poor plasmonic metal tips
Ringe, E.; DeSantis, C. J.; Collins, S. M.; Duchamp, M.; Dunin-Borkowski, R. E.; Skrabalak, S. E.; Midgley, P. A.
Zhang, X.; Guo, J.; Guan, P.; Qin, G.; Pennycook, S. J.
Prabhudev, S.; Bugnet, M.; Zhu, G. -Z.; Bock, C.; Botton, G. A.
Crack healing induced electrical and mechanical properties recovery in a Ti2SnC ceramic
Li, S.; Bei, G.; Chen, X.; Zhang, L.; Zhou, Y.; Mačković, M.; Spiecker, E.; Greil, P.
Niazi, M. R.; Li, R.; Abdelsamie, M.; Zhao, K.; Anjum, D. H.; Payne, M. M.; Anthony, J.; Smilgies, D. -M.; Amassian, A.;
Miller, D.; Akbar, S.; Morris, P.; Williams, R. E. A.; McComb, D. W.
McDowell, C.; Abdelsamie, M.; Zhao, K.; Smilgies, D. -M.; Bazan, G. C.; Amassian, A.
Longo, P.; Thomas, P. J.; Aitouchen, A.; Rice, P.; Topuria, T.; Twesten, R. D.
Near-field plasmonic behavior of Au/Pd nanocrystals with Pd-rich tips
Ringe, E.; DeSantis, C. J.; Collins, S. M.; Duchamp, M.; Dunin-Borkowski, R. E.; Skrabalak, S. E.; Midgley, P. A.
Ghosh, T.; Bardhan, M.; Bhattacharya, M.; Satpati, B.
Wang, X.; Wei, X.; Zhang, J.; Li, R.; Hua, M.; Wang, W.
Awan, S. U.; Hasanain, S. K.; Awan, M. S.; Shah, S. A.
Role of oxygen functional group in graphene oxide for reversible room-temperature NO2 sensing
Choi, Y. R.; Yoon, Y. -G.; Choi, K. S.; Kang, J. H.; Shim, Y. -S.; Kim, Y. H.; Chang, H. J.; Lee, J. -H.; Park, C. R.; Kim, S. Y.; Jang, H. W.
Xiang, W. -D.; Gao, H. -H.; Ma, L.; Ma, X.; Huang, Y. -Y.; Pei, L.; Liang, X. -J.
Ristig, S.; Prymak, O.; Loza, K.; Gocyla, M.; Meyer-Zaika, W.; Heggen, M.; Raabe, D.; Epple, M.
Segregation phenomena in Nd–Fe–B nanoparticles
Schmidt, F.; Pohl, D.; Schultz, l.; Rellinghaus, B.
de Gabory, B.; Dong, Y.; Motta, A. T.; Marquis, E. A.
de Lima, J. F.; Harunsani, M. H.; Martin, D. J.; Kong, D.; Dunne, P. W.; Gianolio, D.; Kashtiban, R. J.; Sloan, J.; Serra, O. A.; Tang, J.; Walton, R. I.
Nanda, K. K.; Swain, S.; Satpati, B.; Besra, L.; Mishra, B.; Chaudhary, Y. S.
Development of a monochromator for aberration-corrected scanning transmission electron microscopy
Mukai, M.; Okunishi, E.; Ashino, M.; Omoto, K.; Fukuda, T.; Ikeda, A.; Somehara, K.; Kaneyama, T.; Saitoh, T.; Hirayama, T.; Ikuhara, Y.
The dual role of coherent twin boundaries in hydrogen embrittlement
Seita, M.; Hanson, J. P.; Gradečak, S.; Demkowicz, M. J.
Gandman, M.; Kauffmann, Y.; Kaplan, W. D.
Holder, K. M.; Huff, M. E.; Cosio, M. N.; Grunlan, J. C.
Basak, S.
Gali, O. A.; Riahi, A. R.; Alpas, A. T.
Investigation of ion induced bending mechanism for nanostructures
Rajput, N. S.; Tong, Z.; Luo, X.
Hueso, J. L.
Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays
McKeown, J. T.; Wu, Y.; Fowlkes, J. D.; Rack, P. D.; Campbell, G. H.
On the origin of nano-chessboard super-lattices in A-site deficient Ca-stabilized Nd2/3TiO3
Azough, F.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Schaffer, B.; Freer, R.
Synthesis and catalytic activity of crown jewel-structured (IrPd)/Au trimetallic nanoclusters
Zhang, H.; Lu, L.; Kawashima, K.; Okumura, M.; Haruta, M.; Toshima, N.
Ono, K.; Miyamoto, M.; Hasuike, S.; Nakano, T.; Kurata, H.
Direct measurement of the low temperature spin state transitions in La1−xSrxCoO3 (0.05 < x < 0.3)
Gulec, A.; Klie, R. F.
Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy
Forbes, B. D.; Houben, L.; Mayer, J.; Dunin-Borkowski, R. E.; Allen, L. J.
Kumar , N.; Auffan, M.; Gattacceca, J.; Rose, J.; Olivi, L.; Borschneck, D.; Kvapil, P.; Jublot, M.; Kaifas, D.; Malleret, L.; Doumenq, P.; Bottero, J. Y.
Tsiapa, I.; Efthimiadou, E. K.; Fragogeorgi, E.; Loudos, G.; Varvarigou, A. D.; Bouziotis, P.; Kordas, G. C.; Mihailidis, D.; Nikiforidis, G. C.; Xanthopoulos, S.; Psimadas, D.; Paravatou-Petsotas, M.; Palamaris, L.; Hazle, J. D.; Kagadis, G. C.
Uranium trioxide behaviour during electron energy loss spectroscopy analysis
Degueldre, C.; Alekseev, E.
Harris, P. J. F.; Slater, T. J. A.; Haigh, S. J.; Hage, F. S.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Brydson, R.
Single molecular spectroscopy: Identification of individual fullerene molecules
Tizei, L. H. G.; Liu, Z.; Koshino, M.; Iizumi, Y.; Okazaki, T.; Suenaga, K.
Hu, J.; Garner, A.; Nic, N.; Gholinia, A.; Nicholls, R.; Lozano-Perez, S.; Frankel, P.; Preuss, M.; Grovenor, C.
Seo, J.; Anjum, D. H.; Takanabe, K.; Kubota, J.; Domen, K.
Nanoscale voxel spectroscopy by simultaneous EELS and EDS tomography
Haberfehlner, G.; Orthacker, A.; Albu, M.; Li, J.; Kothleitner, G.
Vibrational spectroscopy in the electron microscope
Krivanek, O. L.; Lovejoy, T. C.; Dellby, N.; Aoki, T.; Carpenter, R. W.; Rez, P.; Soignard, E.; Zhu, J.; Batson, P. E.; Lagos, M. J.; Egerton, R. F.; Crozier, P. A.
Ursini, C. L.; Cavallo, D.; Fresegna, A. M.; Ciervo, A.; Maiello, R.; Tassone, P.; Buresti, G.; Casciardi, S.; Iavicoli, S.
Emission color mapping of white-luminescent mesoporous carbon-silica nanocomposite
Muto, S. Sato, K.; Ishikawa, Y.; Bosman, M.; Ishii, Y.; Kawasaki, S.
Williams, R. E. A.; Carnevale, S. D.; Kent, T. F.; Stowe, D. J.; Myers, R. C.; McComb, D. W.
Mineralogy and petrology of comet 81P/wild 2 nucleus samples
Zolensky, M. E.; Zega, T. J.; Yano, H.; Wirick, S.; Westphal, A. J.; Weisberg, M. K.; Weber, I.; Warren, J. L.; Velbel, M. A.; Tsuchiyama, A.; Tsou, P.; Toppani, A.; Tomioka, N.; Tomeoka, K.; Teslich, K.; Taheri, M.; Susini, J.; Stroud, R.; Stephan, T.; Stadermann, F. J.; Snead, C. J.; Simon, S. B.; Simionovici, A.; See, T. H.; Robert, F.; Rietmeijer, F. J. M.; Rao, W.; Perronnet, M. C.; Papanastassiou, D. A.; Okudaira, K.; Ohsumi, K.; Ohnishi, I.; Nakamura-Messenger, K.; Nakamura, T.; Mostefaoui, S.; Mikouchi, T.; Meibom, A.; Matrajt, G.; Marcus, M. A.; Leroux, H.; Lemelle, L.; Le, L.; Lanzirotti, A.; Langenhorst, F.; Krot, A. N.; Keller, L. P.; Kearsley, A. T.; Joswiak, D.; Jacob, D.; Ishii, H.; Harvey, R.; Hagiya, K.; Grossman, L.; Grossman, J. N.; Graham, G. A.; Gounelle, M.; Gillet, P.; Genge, M. J.; Flynn, G.; Ferroir, T.; Fallon, S.; Ebel, D. S.; Dai, Z. D.; Cordier, P.; Clark, B.; Chi, M.; Butterworth, A. L.; Brownlee, D. E.; Bridges, J. C.; Brennan, S.; Brearley, A.; Bradley, J. P.; Bleuet, P.; Bland, P. A.; Bastien, R.
Interface-induced nonswitchable domains in ferroelectric thin films
Han, M-G.; Marshall, M. S. J.; Wu, L.; Schofield, M. A.; Aoki, T.; Twesten, R.; Hoffman, J.; Walker, F. J.; Ahn, C. H.; Zhu, Y.
Kitta, M.; Akita, T.; Tanaka, S.; Kohyama, M.
Akita, T.; Tabuchi, M.; Nabeshima, Y.; Tatsumi, K.; Kohyama, M.
Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay materials
Bishop, M. E.; Glasser, P.; Dong, H.; Arey, B. W.; Kovarik, L.
Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics
Kociak, M,; Stéphan, O.; Gloter, A.; Zagonel, L. F.; Tizei, L. H. G.; Tencé, M.; March, K.; Blazit, J. D.; Mahfoud, Z.; Losquin, A.; Meuret, S.; Colliex, C.
Watanabe, S.; Kinoshita, M.; Hosokawa, T.; Morigaki, K.; Nakura, K.
Fe and Mn oxidation states by TEM-EELS in fine-particle emissions from a Fe-Mn alloy making plant.
Marris, H.; Deboudt, K.; Flament, P.; Grobéty, B.; Gieré, R.
Kitta, M.; Akita, T.; Tanaka, S.; Kohyama, M.
Atomic scale real-space mapping of holes in YBa2Cu3O6+δ
Gauquelin, N.; Hawthorn, D. G.; Sawatzky, G. A.; Liang, R. X.; Bonn, D. A.; Hardy, W. N.; Botton, G. A.
Häussler, D.; Houben, L.; Essig, S.; Kurttepeli, M.; Dimroth, F.; Dunin-Borkowski, R. E.
Sánchez-Santolino, G.; Tornos, J.; Bruno, F. Y.; Cuellar, F. A.; Leon, C.; Santamaría, J.; Pennycook, S. J.; Varela, M.
Klimenkov M.; Möslang A.; Materna-Morris, E.
Evolution of order in amorphous-to-crystalline phase transformation of MgF2
Mu, X.; Neelamraju, S.; Sigle, W.; Koch, C. T.; Totò, N.; Schön, J. C.; Bach, A.; Fischer, D.; Jansen, M.; van Aken, P. A.
Seeing the atoms more clearly: STEM imaging from the Crewe era to today
Pennycook, S. J.
Aberration-corrected and energy filtered precession electron diffraction
Eggeman, A. S.; Barnard, J. S.; Midgley, P. A.
Reduction of nickel oxide particles by hydrogen studied in an environmental TEM
Jeangros, Q.; Hansen, T. W.; Wagner, J. B.; Damsgaard, C. D.; Dunin-Borkowski, R. E.; Hébert, C.; Van herle, J.; Hessler-Wyser, A.
Fast STEM spectrum imaging using simultaneous EELS and EDS
Longo, P.; Twesten, R.
Tracking lithium transport and electrochemical reactions in nanoparticles
Wang, F.; Yu, H. C.; Chen, M. H.; Wu, L.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y.; Amatucci, G. G.; Graetz, J.
STEM characterization for lithium-ion battery cathode materials
Huang, R.; Ikuhara, Y.
Subparticle ultrafast spectrum imaging in 4D electron microscopy
Yurtsever, A.; van der Veen, R. M.; Zewail, A. H.
Haruta, M.; Kurashima, K.; Nagai, T.; Komatsu, H.; Shimakawa, Y.; Kurata, H.; Kimoto, K.
Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells
Shao, Z.
Cosandeya, F.; Suc, D.; Sinaa, M.; Pereiraa, N.; Amatuccia, G. G.
Nemcsics, Á.; Heyn, Ch.; Tóth, L.; Dobos, L.; Stemmann, A.; Hansen, W.
Electronic structure of supelattice and twin in Ga doped ZnO measured by monochromated EELS
Chang, H.; Yoon, S.; Seong, T.; Yu, T.; Yuo, Y.; Ahn, J.
Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G.
Lari, L.; Walther, T.; Gass, M.H.; Geelhaar, L.;Chèze, C.; Riechert, H.; Bullough, T. J.; Chalker, P. R.
Janbroers, S.: Crozierc, P. A.; Zandbergen, H. W.; Kooyman, P. J.
Mapping titanium and tin oxide phases using EELS: An application of independent component analysis
de la Peña, F.; Berger, M. H.; Hochepied, J. F.; Dynys, F.; Stephan, O.; Walls, M.
D-STEM: A parallel electron diffraction technique applied to nanomaterials
Ganesh, K. J.; Kawasaki, M.; Zhou, J. P.; Ferreira, P. J.
Gentle STEM: ADF imaging and EELS at low primary energies
Krivanek, O. L.; Dellby, N.; Murfitt, M. F.; Chisholm, M. F.; Pennycook, T. J.; Suenaga, K.; Nicolosi, V.
van Schooneveld, M. M.; Gloter, A.; Stephan, O.; Zagonel, L. F.; Koole, R.; Meijerink, A.; Mulder W. J. M.; de Groot, F. M. F.
Wu, C. T.; Chu, M. W.; Chen, L. C.; Chen, K. H.; Chen, C. W.; Chen, C. H.
Orientation dependence of shock-induced twinning and substructures in a copper bicrystal
Cao, F.; Beyerlein, I. J.; Addessio, F. L.; Sencer, B. H.; Trujillo, C. P.; Cerreta, E. K.; Gray III, G. T.
Servanton, G.; Pantel, R.
Tanaka, K.; Miwa, T.; Sasaki, K.; Kuroda, K.
Review of recent advances in spectrum imaging and its extension to reciprocal space
Maigne, A.; Twesten, R. D.
Bernier, N.; Brosset, C.; Bocquet, F.; Tsitrone, E.; Saikaly, W.; Khodja, H.; Alimov, V. Kh.; Gunn, J. P.
Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography
Jarausch, K.; Thomas, P.; Leonard, D. N.; Twesten, R.; Booth, C. R.
Yakovlev, S.; Libera, M.
Feldhoff, A.; Arnold, M.; Martynczuk, J.; Gesing, Th. M.; Wang, H.
Yamada, T.; Maigne, A.; Yudasaka, M.; Mizuno, K.; Futaba, D. N.; Yumura, M.; Iijima, S.; Hata, K.
High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride
Arenal, R.
Heterogeneity of a vulcanized rubber by the formation of ZnS clusters
Dohi, H.; Horiuchi, S.
Fe speciation in geopolymers with Si/Al molar ratio of ∼2
Perera, D. S.; Cashion, J. D.; Blackford, M. G.; Zhang, Z.; Vance, E. R.
Horiuchi, S.; Dohi, H.
Nanoscale analysis of polymer interfaces by energy-filtering transmission electron microscopy
Horiuchi, S.; Yin, D.; Ougizawa, T.
Nanoscale EELS analysis of dielectric function and bandgap properties in GaN and related materials
Borckt, G.; Lakner, H.
Measuring the thickness of aluminium alloy thin foils using electron energy loss spectroscopy
Bardal, A.; Lie, K.
Applications
Atomic level EELS mapping using high energy edges in DualEELS™ mode
High-speed EELS composition analysis, in DualEELS mode, of metal alloy ohmic contacts for the fabrication of III-V MOSFET devices
EELS: A tool for investigating biological materials
Fast simultaneous acquisition of low- and core-loss regions in the EELS spectrum from catalyst particles containing the heavy metals Au and Pd using the GIF Quantum® system
Fast STEM spectrum imaging using simultaneous EELS and EDS in Gatan Microscopy Suite® software
Review of recent advances in spectrum imaging and its extension to reciprocal space
The use of MLLS fitting approach to resolve overlapping edges in the EELS spectrum at the atomic level
Posters
Fast STEM EELS spectrum imaging analysis of Pd-Au based catalysts
The high efficiency of the latest generation EELS spectrometers allow highly detailed EELS spectra from heavy elements to be acquired in a matter of milliseconds resulting in composition maps with outstanding information content.
A quantitative investigation of biological materials using EELS
EELS has proved to be a valuable tool to obtain compositional information from biological samples. In addition to the composition, EELS also gives insight into the chemistry unveiling the nature of the chemical bonds and different oxidation states.
High-speed composition analysis of high-z metal alloys in DualEELS mode
Demonstrating that high-speed atomic EELS composition maps with high contrast and high signal-to-noise ratio can be acquired routinely from high-energy edges.
Fast atomic level EELS mapping analysis using high-energy edges in DualEELS mode
Demonstrating that atomic EELS mapping using high-energy edges is very effective. The high signal-to-background ratio of high-energy edges leads to simplified data extraction.
Atomic resolved EELS analysis across interfaces in III-V MOSFET high-k dielectric gate stacks
Demonstrating that EELS SI can reveal the elemental distribution at the gate of high-k MOSFET devices at atomic column level.