Ringe Group

Lab focus

The Ringe Group was established in 2014 in the department of Materials Science and NanoEngineering (MSNE) at Rice University, Houston, TX, USA. Emilie Ringe and her group focus on understanding and controlling light-matter interactions in small metallic nanoparticles for applications in biological sensing, enhanced spectroscopy, and light-driven heterogeneous catalysis.

By using correlated optical spectroscopy and electron microscopy tools, the group studies a phenomenon called localized surface plasmon resonance (LSPR), a type of light-matter interaction. LSPRs are a collective oscillation of the conduction electrons in a metal particle that leads to bright colors as well as strong electric fields at the surface of the particle. The resonance frequency changes with the surrounding environment, such that LSPR have exciting applications as nanosensors. Moreover, the strong fields can boost the catalytic activity of the metal surfaces.

Both electrons and photons can interact with plasmon resonances, yielding either photons or electrons. Using electron energy loss spectroscopy (EELS) and cathodoluminescence (CL), techniques using an electron-based excitation and yielding an electron and a photon signal, respectively, the Ringe group studies the symmetry and localization of plasmon modes. Recently, work on Au/Pd nanoparticles has demonstrated that these alloy nanoparticles containing a poor plasmonic metal (Pd in this case) can nevertheless sustain a strong plasmonic response, enabling applications such as plasmon-enhanced photocatalysis and in-situ reaction monitoring and switching. Multiple size-dependent LSPRs and strong spatially localized fields at the Pd-rich tip of stellated particles were observed, where the composition is in fact least favorable for plasmon resonances. A strong substrate coupling was demonstrated via EELS tilt series and shows that Pd is fully participating in the resonances observed. Results are shown below.









Please visit the lab's website for more information.


E. Ringe, C.J. DeSantis, S.M. Collins, M. Duchamp, R.E. Dunin-Borkowski, S.E. Skrabalak, P.A. Midgley. "Resonances of nanoparticles with poor plasmonic metal tips" Scientific Reports 5. 2015, 17431, doi:10.1038/srep17431.