Be confident you can reproducibly prepare then measure structural changes in soft materials that induce stresses and strain within transition metals, affect electronic conductivities, and lead to irreversible phase transformations that decrease your product’s energy output.
Read more...
Better understand material complexities and failures to shrink geometries, industrialize novel 3D architectures and to improve device performance.
Read more...
Zhao, W.; Fu, Z.; Deng, J.; Li, S.; Han, Y.; Li, M. -R.; Wang, X.; Hong, J.;
Han, L.; Addiego, C.; Prokhorenko, S.; Wang, M.; Fu, H.; Nahas, Y.; Yan, X.; Cai, S.; Wei, T.; Fang, Y.; Liu, H.; Ji, D.; Guo, W.; Gu, Z.; Yang, Y.; Wang, P.; Bellaiche, L.; Chen, Y.; Wu, D.; Nie, Y.; Pan, X.
Kim, S. C.; Huang, W.; Zhang, Z.; Wang, J.; Kim, Y.; Jeong, Y. K.; Oyakhire, S. T.; Yang, Y.; Cui, Y.
Kim, M. S.; Zhang, Z.; Rudnicki, P. E.; Yu, Z.; Wang, J.; Wang, H.; Oyakhire, S. T.; Chen, Y.; Kim, S. C.; Zhang, W.; Boyle, D. T.; Kong, X.; Xu, R.; Huang, Z.; Huang, W.; Bent, S. F.; Wang, L. -W.; Qin, J.; Bao, Z.; Cui , Y.
Yu, Z.; Rudnicki, P. E.; Zhang, Z.; Huang, Z.; Celik, H.; Oyakhire, S. T.; Chen, Y.; Kong, X.; Kim, S. C.; Xiao, X.; Wang, H.; Zheng, Y.; Kamat, G. A.; Kim, M. S.; Bent, S. F.; Qin, J.; Cui, Y.; Bao, Z.
Zhang, Z.; Li, Y.; Xu, R.; Zhou, W.; Li, Y.; Oyakhire, S. T.; Wu, Y.; Xu, J.; Wang, H.; Yu, Z.; Boyle, D. T.; Huang, W.; Ye, Y.; Chen, H.; Wan, J.; Bao, Z.; Chiu, W.; Cui, Y.
Sharangi, P.; Pandey, E.; Mohanty,S.; Nayak, S.; Bedanta, S.
Zaccagnini, P.; Ballin, C.; Fontana, M.; Parmeggiani, M.; Bianco, S.; Stassi, S.; Pedico, A.; Ferrero, S.; Lamberti, A.
Liting Yang, L.; Li, X.; Pei, K.; You, W.; Liu, X.; Xia, H.; Wang, Y.; Che, R.
Behera, P.; May, M. A.; Gómez-Ortiz, F.; Susarla, S.; Das, S.; Nelson, C. T.; Caretta, L.; Hsu, S. -L.; McCarter, M. R., Savitzky, B. H.; Barnard, E. S.; Raja, A.; Hong, Z.; García-Fernandez, P.; Lovesey, S. W.; van der Laan, G.; Ophus, C.; Martin, L. W.; Junquera, J.; Raschke, M. A.; Ramesh, R.
Giusto, P.; Cruz, D.; Heil, T.; Tarakina, N.; Patrini, M.; Antonietti, M.
Murthy, A. A.; Stanev, T. K.; Ribet, S. M.; Liu, P.; Watanabe, K.; Taniguchi, T.; Stern, N. P.; dos Reis, R.; Dravid, V. P.
Balch, H. B., Evans, A. M., Dasari, R. R., Li, H., Li, R., Thomas, S., Wang, Q., Bisbey, R. P., Slicker, K., Castano, I., Xun, S., Jiang, L., Zhu, C., Gianneschi, N., Ralph, D. C., Brédas, J-L., Marder, S. R., Dichtel, W. R., Wang, F.
Zhang, Z.; Yang, J.; Huang, W.; Wang, H.; Zhou, W.; Li, Y.; Li, Y.; Xu, J.; Huang, W.; Chiu, W.
Li, H. -K.; de Souza, J. P.; Zhang, Z.; Martis, J.; Sendgikoski, K.; Cumings, J.; Bazant, M. Z.; Majumdar, A.
Adikimenakis, A.; Chatzopoulou, P.; Dimitrakopulos, G. P.; Kehagias, Th.; Tsagaraki, K.; Androulidaki, M.; Doundoulakis, G.; Kuzmik, J.; Georgakilas, A.
Spende, H.; Margenfeld, C.; Meyer, T.; Clavero, I. M.; Bremers, H.; Hangleiter, A.; Seibt, M.; Waag, A.; Bakin, A.
Chao Zhang, C.; Firestein, K. L.; Fernando, J. F. S.; Siriwardena, D.; von Treifeldt, J. E.; Golberg, D.
Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, L. M. -H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S.
Lotnyk, A.; Dankwort, T.; Hilmi, I.; Kienle, L.; Rauschenbach, B.
Olsen, V. S.; Bazioti, C.; Baldissera, G.; Azarov, A.; Prytz, Ø.; Persson, C.; Svensson, B. G.; Kuznetsov, A. Y.; Vines, L.
Lai, Z.; Bi, P.; Wen, L.; Xue, Y.; Jin, Y.
Almadoria, Y.; Delport, G.; Chambard, R.;Orcin-Chaix, L.; Selvati, A. C.; Izard, N.; Belhboub, A.; Aznar, R.; Jousselme, B.; Campidelli, S.; Hermet, P.; Le Parca, R.; Saito, T.; Sato, Y.; Suenaga, K.; Puech, P.; Lauret, J. S.; Cassabois, G.; Bantignies, J. -L.; Alvarez, L.
Pan, J.; Chen, S.; Fu, Q.; Sun, Y.; Zhang, Y.; Lin, N.; Gao, P.; Yang, J.; Qian, Y.
Pool, R.
Pan, J.; Chen, S.; Zhang, D.; Xu, X.; Sun, Y.; Tian, F.; Gao, P.; Yang, J.
Yasin, F. S.; Harvey, T. R.; Chess, J. J.; Pierce, J. S.; Ophus, C.; Ercius, P.; McMorran, B. J.
Zeng, L.; Gammer, C.; Ozdol, B.; Nordqvist, T.; Nygård, J.; Krogstrup, P.; Minor, A. M.; Jäger, W.; Olsson, E.
Gammer, C.; Ophus, C.; Pekin, T. C.; Eckert, J.; Minor, A. M.
de Boisse, B. M.; Nishimura, S.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A.
Tsukasaki, H.; Mori, Y.; Otoyama, M.; Yubuchi, S.; Asano, T.; Tanaka, Y.; Ohno, T.; Mori, S.; Hayashi, A.; Tatsumisago, M.
Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L. R.; Bruce∥, P. G.; Grimaud, A.; Tarascon, J. -M.
Hu, X.; Yasaei, P.; Jokisaari, J.; Öğüt, S.; Salehi-Khojin, A.; Klie, R. F.
Ogata, K.; Jeon, S.; Ko, D.-S.; Jung, I. S.; Kim, J. H.; Ito, K.; Kubo, Y.; Takei, K.; Saito, S.; Cho, Y.-H.; Park, H.; Jang, J.; Kim, H.-G.; Kim, J. -H.; Kim, Y. S.; Choi, W.; Koh, M.; Uosaki, K.; Doo, S. G.; Hwang, Y.; Han, S.
Tsukasaki, H.; Otoyama, M.; Mori, Y.; Mori, S.; Morimoto, H.; Hayashi, A.; Tatsumisago, M.
Gao, J.; Liu, Y.; Wang, Y.; Wang, D.
Tsukasaki, H.; Mori, S.; Morimoto, H.; Hayashi, A.; Tatsumisago , M.
Hwang, S.; Lee, Y.; Jo, E.; Chung, K. Y.; Choi, W.; Kim, S. M.; Chang, W.
Shi, L.; Pang, C.; Chen, S.; Wang, M.; Wang, K.; Tan, Z.; Gao, P.; Ren, J.; Huang. Y.; Peng, H.; Liu, Z.
Minella, C. B.; Gao, P.; Zhao‐Karger, Z.; Mu, X.; Diemant, T.; Pfeifer, M.; Chakravadhanula, V. S. K.; Behm, R. J.; Fichtner, M.
Zhang, Z.; Guo, H.; Ding, W.; Zhang, B.; Lu, Y.; Ke, X.; Liu, W.; Chen, F.; Sui, M.
Asayesh-Ardakani, H.; Yao, W.; Nie, A.; Marley, P. M.; Braham, E.; Klie, R. F.; Banerjee, S.; Shahbazian-Yassar, R.
Ziolkowska, D. A.; Jangam, J. S. Dilip; Rudakov, G.; Paronyan, T.; Akhtar, M.; Sumanasekera, G.; Jasinski, J. B.
Liu, H.; Bugnet, M.; Tessaro, M. Z.; Harris, K. J.; Dunham, M. J. R.; Jiang, M.; Goward, G. R.; Botton, G. A.
Ziolkowska, D. A.; Jasinski, J. B.; Hamankiewicz, B.; Korona, K. P.; Wu, S. -H.; Czerwinsk, A.
Wegele, T.; Beyer, A.; Ludewig, P.; Rosenow, P.; Duschek, L.; Jandieri, K.; Tonner, R.; Stolz, W.; Volz, K.
Dieterle, L.;Butz, B.; Müller, E.
Broad argon ion beam system designed to polish and coat samples for SEM imaging and analytical techniques.
Single and double tilt heating holders for direct observation of microstructural phase changes, nucleation, growth, and dissolution processes.
DigitalMicrograph, also known as Gatan Microscopy Suite, drives your digital cameras and surrounding components to support key applications including tomography, in-situ, spectrum and diffraction imaging, plus more.
Gatan’s latest CMOS camera that with its resolution, speed, and ease of use will revolutionize electron microscopy.
The next-generation plasma tool to remove hydrocarbon contamination from TEM and SEM samples and holders.
A powerful tool that adds 4D STEM diffraction capabilities to your existing Gatan in-situ camera.
High-angle annular dark field (HAADF), annular dark field (ADF) plus bright and dark field (BF/DF) detectors for STEM imaging optimized for electron energy loss spectroscopy (EELS).
Digital beam control and image processing to enhance the photographic quality of your digital images.
Simulation tool to eliminate the guesswork from your EELS and EFTEM compositional mapping experiments.
Diffraction analysis package (DIFPACK) to automate the selection area of your electron diffraction (SAED) patterns and high resolution lattice images of crystalline samples.
A powerful method of obtaining detailed analytic data from a sample on an electron microscope equipped with scanning mode.
Quantify microstructural changes in materials due to applied mechanical loading.
Facilitate your HREM assays by automatically adjusting the critical imaging parameters of a TEM microscope focus, stigmation, and beam tilt.
The next generation cryo-holder for your high-resolution cryo-EM and tomography experiments.
Preserve sample integrity with controlled transfer from an inert environment to the TEM.
Enabling optically-coupled transmission electron microscopy to reveal nanoscale structural, optical, and electronic properties
The EELS and EFTEM systems ideal for multiuser facilities, now with the Stela hybrid-pixel option.
Enabling optically-coupled transmission electron microscopy to reveal nanoscale structural, optical, and electronic properties
The high-performance scintillator camera that elevates your everyday transmission electron microscopy
The premier microstructural visualization and analysis tool for interrogating and understanding electron backscatter diffraction (EBSD) mapping data.
Enables the characterization of electron backscatter diffraction (EBSD) patterns within the user-friendly APEX software platform.
Premier software program for collecting and analyzing energy dispersive spectroscopy (EDS) data and the compositional characterization of materials.
Combines the latest advances in energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and wavelength dispersive spectrometry (WDS) in a single analytical tool.
A world-class materials characterization solution that provides users with elemental composition and crystallographic orientation results in one easy-to-use package.
By integrating energy dispersive spectroscopy (EDS) and wavelength dispersive spectrometry (WDS) analytical techniques on a single platform, EDAX Neptune provides the power and flexibility of EDS with the resolution, precision, and detection limits of WDS.
Combines the EDAX wavelength dispersive spectrometry (WDS) analysis software with state-of-the-art spectrometers for improved accuracy and precision, guaranteeing the best results for your materials analysis.
Offers high-speed electron backscatter diffraction (EBSD) mapping with the best indexing performance on real-world materials.
The world’s first and only commercially available electron backscatter diffraction (EBSD) detector with unparalleled performance as low as 3 kV.
The game-changing advancements in the Octane Elite silicon drift detectors (SDDs) take energy dispersive spectroscopy (EDS) analysis to the next level.
An enhanced energy dispersive spectroscopy (EDS) platform with the latest silicon drift detector (SDD) technology and high-speed electronics advancements.
Delivers powerful energy dispersive spectroscopy (EDS) analytical capability in a compact package, maximizing performance and flexibility while providing streamlined operation to guarantee fast results and ease of use.
The first and only system that quantitatively reveals the distribution of lithium in scanning electron microscopes
The cutting-edge counting camera for groundbreaking imaging, diffraction, and in-situ studies.
Electron counting for all your EELS, EFTEM, and energy-filtered 4D STEM applications.
The most intuitive and easy-to-use energy dispersive spectroscopy (EDS) tool for scanning transmission electron microscope (STEM) applications and in-situ microscopy.